Maximum Lq-likelihood Estimation in Functional Measurement Error Models
نویسندگان
چکیده
منابع مشابه
Maximum Likelihood Estimation of Parameters in Generalized Functional Linear Model
Sometimes, in practice, data are a function of another variable, which is called functional data. If the scalar response variable is categorical or discrete, and the covariates are functional, then a generalized functional linear model is used to analyze this type of data. In this paper, a truncated generalized functional linear model is studied and a maximum likelihood approach is used to esti...
متن کاملTESTING FOR AUTOCORRELATION IN UNEQUALLY REPLICATED FUNCTIONAL MEASUREMENT ERROR MODELS
In the ordinary linear models, regressing the residuals against lagged values has been suggested as an approach to test the hypothesis of zero autocorrelation among residuals. In this paper we extend these results to the both equally and unequally replicated functionally measurement error models. We consider the equally and unequally replicated cases separately, because in the first case the re...
متن کاملMaximum Lq-Likelihood Estimation via the Expectation Maximization Algorithm: A Robust Estimation of Mixture Models
We introduce a maximum Lq-likelihood estimation (MLqE) of mixture models using our proposed expectation maximization (EM) algorithm, namely the EM algorithm with Lq-likelihood (EM-Lq). Properties of the MLqE obtained from the proposed EMLq are studied through simulated mixture model data. Compared with the maximum likelihood estimation (MLE) which is obtained from the EM algorithm, the MLqE pro...
متن کاملMaximum likelihood estimation of generalized linear models with covariate measurement error
Generalized linear models with covariate measurement error can be estimated by maximum likelihood using gllamm, a program that fits a large class of multilevel latent variable models (Rabe-Hesketh, Skrondal, and Pickles 2004b). The program uses adaptive quadrature to evaluate the log-likelihood, producing more reliable results than many other methods (Rabe-Hesketh, Skrondal, and Pickles 2002). ...
متن کاملModified Maximum Likelihood Estimation in First-Order Autoregressive Moving Average Models with some Non-Normal Residuals
When modeling time series data using autoregressive-moving average processes, it is a common practice to presume that the residuals are normally distributed. However, sometimes we encounter non-normal residuals and asymmetry of data marginal distribution. Despite widespread use of pure autoregressive processes for modeling non-normal time series, the autoregressive-moving average models have le...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Statistica Sinica
سال: 2022
ISSN: 1017-0405
DOI: 10.5705/ss.202019.0414